【Abstract】As the field of data science continues to evolve, bipartite graphs have emerged as a fundamental structure in numerous applications, drawing significant interest from both academic and industrial communities. Bipartite graphs are a specific type of graph consisting of two distinct sets of vertices, where connections only occur between vertices of different sets. Examples include e-commerce networks and biological networks. Analytics of bipartite graphs has become an important research topic in the era of big data. This tutorial aims to shed light on analysis methods for bipartite graphs, categorizing them into three areas: classical models, learning-based models, and application-driven models. We start by outlining the importance of bipartite graph analytics, and the unique challenges that need to be addressed. Then, we conduct a thorough review of existing works on bipartite graph analytics. We also compare and analyze the models and solutions in these works. Finally, we point out new research directions.