讲座:Optimal Policies and Heuristics To Match Supply With Demand For Online Retailing 发布时间:2022-05-19

题 目Optimal Policies and Heuristics To Match Supply With Demand For Online Retailing

嘉 宾:林云峰 副教授 新加坡管理大学

主持人:曹宇峰 助理教授 上海交通大学安泰经济与管理学院

时 间20220518日(周三)14:00-15:30(腾讯会议)

(校内师生如需获取会议号和密码,请于518日中午12点前发送电邮至mliu18@sjtu.edu.cn获取)

内容简介:

We consider an online retailer selling multiple products to multiple zones over a single period. The retailer orders the products from a single supplier and stores them at multiple warehouses. At the start of the selling period, the retailer determines the order quantities of the products and their storage quantities at each warehouse subject to its capacity constraint. At the end of the period, after knowing the demands, the retailer determines the retrieval quantities from each warehouse to fulfill the demands. The retailer’s objective is to maximize her expected profit. For the single-zone case, we solve the problem optimally. The optimal retrieval policy is a greedy policy. We design a polynomial-time algorithm to determine the optimal storage policy, which preserves a nested property: Among all non-empty warehouses, a smaller-index warehouse contains all the products stored in a larger-index warehouse. The optimal ordering policy is a newsvendor-type policy. The problem becomes intractable analytically if there are multiple zones and we propose an efficient heuristic to solve it. This heuristic involves a non-trivial hybrid approximation of the second-stage expected profit. The heuristic is data driven, which uses demand samples as inputs to solve the problem without knowing the true demand distributions. Our numerical experiments suggest that this heuristic achieves a larger profit in a much shorter time compared to state-of-the-art approaches. The advantage of our heuristic becomes more obvious as the tail of the demand distribution becomes fatter or as the problem size becomes larger, clearly showing the heuristic’s efficiency. A case study based on data from a major fashion online retailer in Asia further confirms the superiority of the heuristic. With flexible fulfillment, our heuristic improves the efficiency by 28% on average compared to a dedicated policy adopted by the retailer.

演讲人简介:

Yun Fong LIM is Associate Professor of Operations Management at the Lee Kong Chian School of Business, Singapore Management University (SMU). He is also Academic Director of the MSc in Management (MiM) Program at SMU. He has been a Chang Jiang Chair Professor, a Lee Kong Chian Fellow, an MPA Research Fellow, and an NOL Fellow. Yun Fong’s research has appeared in Operations Research, Management Science, Manufacturing and Service Operations Management, and Production and Operations Management. He has delivered keynote and plenary speeches in several international conferences. In addition, his work has received funding by MOE, A*STAR, and NNSF, and media coverage by The Business Times, CNA938, and Channel 8. His current research interests include e-commerce and marketplace analytics, online platforms, warehousing and fulfillment, sustainable urban logistics, and flexible workforce and resource management. Yun Fong serves as Senior Editor for Production and Operations Management and Associate Editor for Naval Research Logistics.

Yun Fong is a recipient of the SMU Teaching Excellence Innovative Teacher Award. He teaches both undergraduate and postgraduate courses in Operations Management. He has provided consulting service and executive development to corporations such as Alibaba, Maersk, McMaster-Carr Company, Resorts World Sentosa, Schneider Electrics, Temasek Holdings, and Zalora. Yun Fong obtained both his PhD and MSc degrees in Industrial and Systems Engineering from the Georgia Institute of Technology.

欢迎广大师生参加!